US009071772B2 # (12) United States Patent ## Raring et al. ## (54) LASER BASED DISPLAY METHOD AND SYSTEM (71) Applicant: Soraa Laser Diode, Inc., Goleta, CA (US) (72) Inventors: **James W. Raring**, Goleta, CA (US); Paul Rudy, Fremont, CA (US) (73) Assignee: Soraa Laser Diode, Inc., Goleta, CA (US) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. (21) Appl. No.: 14/249,242 (22) Filed: Apr. 9, 2014 (65) Prior Publication Data US 2014/0253697 A1 Sep. 11, 2014 #### Related U.S. Application Data - (60) Division of application No. 14/035,045, filed on Sep. 24, 2013, now Pat. No. 8,730,410, which is a continuation of application No. 13/853,694, filed on Mar. 29, 2013, now Pat. No. 8,582,038, which is a continuation of application No. 12/789,303, filed on May 27, 2010, now Pat. No. 8,427,590. - (60) Provisional application No. 61/182,106, filed on May 29, 2009, provisional application No. 61/182,105, filed on May 29, 2009. - (51) Int. Cl. H04N 5/64 (2006.01) H04N 9/31 (2006.01) H04N 5/74 (2006.01) G02F 1/00 (2006.01) F21V 1/00 (2006.01) (Continued) #### (52) U.S. Cl. ### (45) Date of Patent: (10) Patent No.: US 9,071,772 B2 (45) Date of Patent: Jun. 30, 2015 #### (58) Field of Classification Search None See application file for complete search history. #### (56) References Cited #### U.S. PATENT DOCUMENTS 4,341,592 A 7/1982 Shortes et al. 4,860,687 A 8/1989 Frijlink (Continued) #### FOREIGN PATENT DOCUMENTS CN 1668947 A 9/2005 JP 3-287770 12/1991 (Continued) #### OTHER PUBLICATIONS Non-Final Office Action of Dec. 22, 2014 for U.S. Appl. No. 14/262,208, 25 pages. (Continued) Primary Examiner — Jefferey Harold Assistant Examiner — Sean Haiem (74) Attorney, Agent, or Firm — Kilpatrick Townsend & Stockton LLP #### (57) ABSTRACT The present invention is directed to display technologies. More specifically, various embodiments of the present invention provide projection display systems where one or more laser diodes are used as light source for illustrating images. In one set of embodiments, the present invention provides projector systems that utilize blue and/or green laser fabricated using gallium nitride containing material. In another set of embodiments, the present invention provides projection systems having digital lighting processing engines illuminated by blue and/or green laser devices. In one embodiment, the present invention provides a 3D display system. There are other embodiments as well. #### 22 Claims, 17 Drawing Sheets # US 9,071,772 B2 Page 2 | (51) I-4 Cl | | 9 126 024 | D1 2/2012 | Davin a | |--|--|------------------------------|------------|--------------------------------------| | (51) Int. Cl. F21V 11/00 | (2006.01) | 8,126,024
8,143,148 | | Raring
Raring et al. | | | , , | 8,148,801 | B2 4/2012 | D'Evelyn | | B60Q 1/26 | (2006.01) | 8,242,522
8,247,887 | B1 8/2012 | Raring
Raring et al. | | G02F 1/1335 | (2006.01) | 8,252,662 | | Poblenz et al. | | G03B 21/00 | (2006.01) | 8,254,425 | B1 8/2012 | Raring | | H01S 5/00 | (2006.01) | 8,259,769
8,427,590 | | Raring et al.
Raring | | G03B 21/20 | (2006.01) | 8,730,410 | | Raring et al. | | H04N 13/04 | (2006.01) | 2002/0171092 | | Goetz et al. | | | , , | 2003/0000453
2003/0001238 | | Unno et al.
Ban | | (56) References Cited | | 2003/0012243 | A1 1/2003 | Okumura | | IIS PATE | ENT DOCUMENTS | 2003/0020087
2003/0140846 | | Goto et al.
Biwa et al. | | 0.0.1111 | STAT DOCUMENTS | 2003/0200931 | | | | | 990 Manabe et al. | 2003/0216011 | | Nakamura et al. | | | 994 Jewell et al.
994 Nakamura | 2004/0012027
2004/0025787 | | Keller et al.
Selbrede et al. | | 5,366,953 A 11/1 | 994 Char et al. | 2004/0060518 | A1 4/2004 | Nakamura et al. | | | 996 Lida et al.
997 Yoshida et al. | 2004/0099213
2004/0104391 | | Adomaitis et al.
Maeda et al. | | | 997 Hirabayashi | 2004/0104391 | | Sekine | | 5,647,945 A 7/1 | 997 Matsuse et al. | 2004/0196877 | | Kawakami et al. | | - , | 997 Ishikawa et al.
998 Saito et al. | 2004/0222357
2004/0233950 | | King et al.
Furukawa et al. | | | 999 Tomoyasu et al. | 2004/0247275 | | Vakhshoori et al. | | | 999 O'Brien et al. | 2004/0262624 | | Akita et al. | | | 999 Rorie et al.
000 Hashimoto et al. | 2005/0040384
2005/0072986 | | Tanaka et al.
Sasaoka | | | 000 Duncan | 2005/0168564 | | Kawaguchi et al. | | | 000 Kiyoku et al. | 2005/0224826 | | Keuper et al.
Raaiimakers | | | 001 Glew et al.
001 Jorke | 2005/0229855
2005/0286591 | | 3 | | 6,379,985 B1 4/2 | 002 Cervantes et al. | 2006/0030738 | A1 2/2006 | Vanmaele et al. | | | 002 Hubacek
002 Goetz et al. | 2006/0033009
2006/0037529 | | Kobayashi et al.
D'Evelyn | | | 002 Goetz et al.
003 Kozaki | 2006/0037329 | | Wu et al. | | | 003 Goetz et al. | 2006/0060131 | | Atanackovic | | | 004 Tanabe et al.
004 Shiomi et al. | 2006/0066319
2006/0078022 | | Dallenbach et al.
Kozaki et al. | | 6,755,932 B2 6/2 | 004 Masuda et al. | 2006/0079082 | A1 4/2006 | Bruhns et al. | | | 004 Setlur et al. | 2006/0086319 | | Kasai et al. | | | 004 Ose
004 Shen et al. | 2006/0118799
2006/0126688 | | D'Evelyn et al.
Kneissl | | 6,858,081 B2 2/2 | 005 Biwa et al. | 2006/0144334 | | Yim et al. | | | 005 Akasaka et al.
006 Hall | 2006/0175624
2006/0189098 | | Sharma et al.
Edmond | | | 006 Chai et al. | 2006/0193359 | | Kuramoto | | | 006 D'Evelyn et al. | 2006/0205199 | | Baker et al. | | | 006 D'Evelyn
006 Setlur et al. | 2006/0216416
2006/0256482 | | Sumakeris et al.
Araki et al. | | | 007 Baker et al. | 2006/0288928 | A1 12/2006 | Eom et al. | | 7,303,630 B2 12/2 | 007 Motoki et al. | 2007/0081857
2007/0086916 | | Yoon
LeBoeuf et al. | | | 007 Granneman et al.
008 Ohtsuka et al. | 2007/0093073 | | Farrell et al. | | | 008 Imer et al. | 2007/0110112 | | Sugiura | | | 008 Radkov et al. | 2007/0120141
2007/0153866 | | Moustakas et al.
Shchegrov et al. | | the state of s | 008 Chua et al.
008 Miyanaga et al. | 2007/0163490 | A1 7/2007 | Habel et al. | | the state of s | 008 Matsumura | 2007/0166853 | | Guenthe et al. | | 7,483,466 B2 1/2 | 009 Uchida et al. | 2007/0190758
2007/0217462 | | | | | 009 Scheible et al. | 2007/0242716 | | | | | 009 Yoshida
010 Kaeding et al. | 2007/0252164
2008/0087919 | | Zhong et al.
Tysoe et al. | | 7,727,332 B2 6/2 | 010 Habel et al. | 2008/0092812 | A1 4/2008 | McDiarmid et al. | | 7,733,571 B1 6/2 | 010 Li | 2008/0095492 | | | | | 010 Kim et al.
010 Yoshida | 2008/0121916
2008/0124817 | | Teng et al.
Bour et al. | | | 010 Hueller et al. | 2008/0124817 | | Harbers et al. | | 7,862,761 B2 1/2 | 011 Okushima et al. | 2008/0149949 | | Nakamura et al. | | | 011 Zhai et al.
011 Kyono et al. | 2008/0149959
2008/0164578 | | Nakamura et al.
Tanikella et al. | | | 011 Kyono et al.
011 Akita et al. | 2008/0104378 | | Mitrovic et al. | | 8,017,932 B2 9/2 | 011 Okamoto et al. | 2008/0191192 | A1 8/2008 | Feezle et al. | | | 011 Murphy et al. | 2008/0191223 | | Nakamura et al. | | 8,124,996 B2 2/2 | 012 Raring et al. | 2008/0198881 | A1 8/2008 | Farrell et al. | | WO 2008-041521 4/2008
U.S. PATENT DOCUMENTS WO 2010/120819 10/2010 | | | | | |--|--|--|--|--| | U.S. PATENT DOCUMENTS 10/2010 | | | | | | 2008/0210958 A1 9/2008 Senda et al. OTHER PUBLICATIONS | | | | | | 2008/0217745 A1 9/2008 Miyanaga et al.
2008/0232416 A1 9/2008 Okamoto et al. Abare "Cleaved and Etched Facet Nitride Laser Diodo | es" IFFF Jour- | | | | | 2000/0252110 111 5/2000 Okamoto et al. | | | | |
| 2009/0295000 A1 11/2009 0141-1 | nal of Selected Topics in Quantum Electronics, vol. 4, No. 3, pp. | | | | | 2009/02010C1 A1 11/2009 K 1 1 1 1 1 2009 K 1 1 1 1 1 2009 K 1 1 1 1 2009 K 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | | | | 2008/0303033 A1 12/2008 Brandes Aoki et al., inidaAs/inidaAsr MQW Electioaosoipi | | | | | | 2008/0308815 A1 12/2008 Kasai et al. Integrated with a DFB Laser Fabricated by Band-Ga | | | | | | 2000/0313177 111 12/2000 14hii et al. | trol Selective Area MOCVD, 1993," IEEE J Quantum Electronics, | | | | | 2009/0021723 A1 1/2009 De Lega vol. 29, pp. 2088-2096. | D: 1 14 | | | | | 2009/0058532 A1 3/2009 Kikkawa et al. Asano et al., "100-mW kink-Free Blue-Violet Lase 2009/0066241 A1 3/2009 Yokoyama Low Aspect Ratio" 2003 IEEE Journal of Quantum F | | | | | | Edwindpect tatio, 2005, IEEE totalia of Quantame | Low Aspect Ratio," 2003, IEEE Journal of Quantum Electronics, vol. | | | | | 2009/0080857 A1 3/2009 St John-Farkin | | | | | | 2009/0081857 A1 3/2009 Hanser et al. Asir Knan "Cleaved cavity optically pumped inc | Asif Khan "Cleaved cavity optically pumped InGaN-GaN laser | | | | | 2009/0081867 A1 3/2009 Taguchi et al. grown on spinel substrates," Appl. Phys. Lett. 69 (16), | pp. 2418-2420 | | | | | 2009/0141765 A1 6/2009 Kohda et al. (Oct. 14, 1996). | | | | | | | Bernardini et al., "Spontaneous Polarization and Piezoelectric Con- | | | | | 2000/0220510 A1 0/2000 C-1-1 | stants of III-V Nitrides," 1997, Physical Review B, vol. 56, No. 16, | | | | | 2000/0250686 A1 10/2000 Sato et al. | ** | | | | | 2009/0267100 A1 10/2009 Miyake et al Calleau et al., Studies off Selective Only FE of C | Caneau et al., "Studies on Selective OMVPE of (Ga,In)/(As,P)," | | | | | 2009/02/3003 AT T1/2009 Lill | 1992, Journal of Crystal Growth, vol. 124, pp. 243-248. | | | | | 2007/0301307 ATT 12/2007 D Everyn | Chen et al., "Growth and Optical Properties of Highly Uniform and | | | | | | Periodic InGaN Nanostructures," 2007, Advanced Materials, vol. 19, | | | | | | pp. 1707-1710. | | | | | 2000/021616 A1 12/2000 M-1-ill | Ammonothermal Method," Journal of Crystal Growth, 2007, vol. | | | | | 2000/03/20744 A.1 12/2000 D'Evalyn Animoliothermai Wethou, Journal of Crystal Grov | 300, pp. 11-16. | | | | | 2009/0321//8 AT 12/2009 Chen et al. Eroposite 'Tools for CVD and Enitory'. In | straduation to | | | | | 2010/0001300 A1 1/2010 Raring et al. Franssila, 'Tools for CVD and Epitaxy', In 2010/0003492 A1 1/2010 D'Evelyn Microfabrication, 2004, pp. 329-336. | inoduction to | | | | | | of GaN based | | | | | 2010/0006546 A1 1/2010 Young et al. Fujii et al., "Increase in the Extraction Efficiency 2010/0006873 A1 1/2010 Raring et al. Light-Emitting Diodes Via Surface Roughening," | | | | | | 2010/0025656 A1 2/2010 Raring et al. Physics Letters, vol. 84, No. 6, pp. 855-857. | 2004, Applied | | | | | 2010/0031875 A1 2/2010 D'Evelyn Funato et al., "Blue, Green, and Amber InGaN/GaN | Light-Emitting | | | | | 2010/0044718 A1 2/2010 Hanser et al. Diodes on Semipolar (1122) GaN Substrates," 2006, J | | | | | | 2010/0096615 A1 4/2010 Okamoto et al. nese Applied Physics, vol. 45, No. 26, pp. L659-L66 | | | | | | 2010/0104495 A1 4/2010 Kawabata et al. Eunato et al. "Monolithic Polychromatic Light-Et | | | | | | 2010/0140/45 A1 0/2010 Kilali et al. Rased on InGaN Microfacet Quantum Wells towar | | | | | | 2010/0151194 A1 6/2010 D'Evelyn Based on India't Microtacet Quantum Wens towar 2010/0195687 A1 8/2010 Okamoto et al. Solid-State Lighting," 2008, Applied Physics Expression | | | | | | 2010/0220262 A1 9/2010 DeMille et al. 011106-1-011106-3. | , | | | | | 2010/0295054 A1 11/2010 Okamoto et al. Founta et al., 'Anisotropic Morphology of Nonpola | r a-Plane GaN | | | | | | Quantum Dots and Quantum Wells,' Journal of Applied Physics, vol. | | | | | 2010/0309943 A1 12/2010 Chakraborty et al. 102, vol. 7, 2007, pp. 074304-1-074304-6. | | | | | | 2010/0316075 A1 12/2010 Raring et al. Gardner et al. "Blue-emitting InGaN-GaN double- | heterostructure | | | | | 2010/0327291 A1 12/2010 Preble et al. light-emitting diodes reaching maximum quantum et | | | | | | 2011/0057167 A1 3/2011 Ueno et al. 200 A/cm2", Applied Physics Letters 91, 243506 (20 | | | | | | 2011/0064100 A1 3/2011 Raring et al. hap://techon.nikkeibp. co jp/english/NEWS_ | EN/20080122/ | | | | | 2011/0064102 A1 2/2011 Paring et al | | | | | | 2011/0075604 A1 3/2011 Vochizumi et al Thramatsu et al., Selective Area Glowth and Epitaxia | | | | | | 2011/00/3048 A1 5/2011 Hardy et al. growth of GaN by Metalorganic Vapor Phase Epitaxy Vapor Phase Epitaxy. Materials Science and Enginee | | | | | | 2011/0129669 A1 6/2011 Fujito et al. Way 6, 1999. pp. 104-111. | inig B, voi. 39, | | | | | 2011/01808/4 A1 8/2011 Shuffi Iso et al. "High Brightness Blue InGaN/GaN Light I | Emitting Diode | | | | | 2011/018088/ A1 8/2011 Hottlef et al. on Nonnolar m-plane Rulk GaN Substrate "2007 Ja | | | | | | 2011/0210/93 AT 9/2011 11su et al. of Applied Dhyrica, yel. 46 No. 40, pp. 1060-1062 | r | | | | | 2011/0247556 A1 10/2011 Raring et al. 60 Applied Physics, vol. 40, No. 40, pp. 1900-1902.
2011/0286484 A1 11/2011 Raring et al. Kendall et al., "Energy Savings Potential of Solid St | ate Lighting in | | | | | 2012/0104359 A1 5/2012 Felker et al. General Lighting Applications," 2001, Report for the | Department of | | | | | 2012/0178198 A1 7/2012 Raring et al. Energy, pp. 1-35. | | | | | | 2012/0187371 A1 7/2012 Raring et al. Kim et al, "Improved Electroluminescence on Nor | | | | | | 2014/0226079 A1 8/2014 Raring et al. InGaN/GaN Qantum Well LEDs", 2007, Physica | Status Solidi | | | | | 2014/0267937 A1 9/2014 Raring et al. (RRL), vol. 1, No. 3, pp. 125-127. | Ouont 317-11 | | | | | 2014/0293139 A1 10/2014 Raring et al. Kuramoto et al., "Novel Ridge-Type InGaN Multiple- | | | | | | | Laser Diodes Fabricated by Selective Area Re-Growth on n-GaN Substrates," 2007, Journal of Japanese Applied Physics, vol. 40, pp. 925-927. | | | | | JP 2007-173467 7/2007 Lin et al. "Influence of Separate Confinement Heteros | structure Layer | | | | | | on Carrier Distribution in InGaAsP Laser Diodes with Nonidentical | | | | | JP 2008-193057 8/2008 Multiple Quantum Wells," Japanese Journal of Applie | Multiple Quantum Wells," Japanese Journal of Applied Physics, vol. | | | | | JP 2008-198952 8/2008 43, No. 10, pp. 7032-7035 (2004). | | | | | #### (56)References Cited #### OTHER PUBLICATIONS Masui et al. "Electrical Characteristics of Nonpolar InGaN-Based Light-Emitting Diodes Evaluated at Low Temperature," Jpn. J. Appl. Phys. 46 pp. 7309-7310 (2007). Michiue et al. "Recent development of nitride LEDs and LDs," Proceedings of SPIE, vol. 7216, 72161Z (2009). Nakamura et al., "InGaN/Gan/AlGaN-based Laser Diodes with Modulation-doped Strained-layer Superlattices Grown on an Epitaxially Laterally Grown GaN Substrate", 1998, Applied Physics Letters, vol. 72, No. 12, pp. 211-213. Nam et al., "Later Epitaxial Overgrowth of GaN films on SiO2 Areas Via Metalorganic Vapor Phase Epitaxy," 1998, Journal of Electronic Materials, vol. 27, No. 4, pp. 233-237. Okamoto et al., "Pure Blue Laser Diodes Based on Nonpolar m-Plane Gallium Nitride with InGaN Waveguiding Layers," 2007, Journal of Japanese Applied Physics, vol. 46, No. 35, pp. 820-822 Okamoto et. al "Continuous-Wave Operation of m-Plane InGaN Multiple Quantum Well Laser Diodes" The Japan Society of I Applied Physics JJAP Express LEtter, vol. 46, No. 9, 2007 pp. L 187-L 189. Okamoto et al. in "High-Efficiency Continuous-Wave Operation of Blue-Green Laser Diodes Based on Nonpolar m-Plane Gallium Nitride," The Japan Society of Applied Physics, Applied Physics Express 1 (Jun. 2008). Park, "Crystal orientation effects on electronic properties of wurtzite InGaN/GaN quantum wells,", Journal of Applied Physics vol. 91, No. 12, pp. 9904-9908 (Jun. 2002). Purvis, "Changing the Crystal Face of Gallium Nitride." The Advance Semiconductor Magazine, vol. 18, No. 8, Nov. 2005. Romanov "Strain-induced polarization in wurtzite III-nitride semipolar layers," Journal of Applied Physics 100, pp. 023522-1 through 023522-10 (Jul. 25, 2006) Sato et al., "High Power and High Efficiency Green Light Emitting Diode on free-Standing Semipolar (1122) Bulk GaN Substrate, 2007. Physica Status Solidi (RRL), vol. 1, pp. 162-164. Sato et al., "Optical Properties of Yellow Light-Emitting-Diodes Grown on Semipolar (1122) Bulk GaN Substrate," 2008, Applied Physics Letter, vol. 92, No. 22, pp. 221110-1-221110-3. Schmidt et al., "Demonstration of Nonpolar m-plane InGaN/GaN Laser Diodes," 2007, Journal of Japanese Applied Physics, vol. 46, No. 9, pp. 190-191. Schmidt et al., "High Power and High External Efficiency m-plane InGaN Light Emitting Diodes," 2007, Japanese Journal of Applied Physics, vol. 46, No. 7, pp. L126-L128. Schoedl "Facet degradation of GaN heterostructure laser diodes," Journal of Applied Physics vol. 97, issue 12, pp. 123102-1 to 123102-8 (2005). Shchekin et al., "High Performance Thin-film Flip-Chip InGaN-GaN Light-emitting Diodes," 2006, Applied Physics Letters, vol. 89, pp. 071109-071109-3. Shen et al. "Auger recombination in InGaN measured by photoluminescence," Applied Physics Letters, 91, 141101 (2007). Sizov et al., "500-nm Optical Gain Anisotropy of Semipolar (1122) InGaN Quantum Wells," 2009, Applied Physics Express, vol. 2, pp. 071001-1-071001-3. Tomiya et. al. Dislocation related issues in the degradation of GaNbased laser diodes, IEEE Journal of Selected Topics in Quantum Electronics vol. 10, No. 6 (2004). Tyagi et al., "High Brightness Violet InGaN/GaN Light Emitting Diodes on Semipolar (1011) Bulk GaN Substrates," 2007, Japanese Journal of Applied Physics, vol. 46, No. 7, pp. L129-L131. Tyagi et al., 'Semipolar (1011) InGaN/GaN Laser Diodes on Bulk GaN Substrates,' Japanese Journal of Applied Physics, vol. 46, No. 19, 2007, pp. L444-L445. Uchida et al., "Recent Progress in High-Power Blue-violet Lasers," 2003, IEEE Journal of
Selected Topics in Quantum Electronics, vol. 9, No. 5, pp. 1252-1259. Waltereit et al., "Nitride Semiconductors Free of Electrostatic Fields for Efficient White Light-emitting Diodes," 2000, Nature: International Weekly Journal of Science, vol. 406, pp. 865-868. Wierer et al., "High-power AlGaInN Flip-chip Light-emitting Diodes," 2001, Applied Physics Letters, vol. 78, No. 22, pp. 3379- Yamaguchi, A. Atsushi, "Anisotropic Optical Matrix Elements in Strained GaN-quantum Wells with Various Substrate Orientations," 2008, Physica Status Solidi (PSS), vol. 5, No. 6, pp. 2329-2332. Yoshizumi et al. "Continuous-Wave operation of 520 nm Green InGaN-Based Laser Diodes on Semi-Polar {20-21} GaN Substrates," Applied Physics Express 2 (2009). Yu et al., "Multiple Wavelength Emission from Semipolar InGaN/ GaN Quantum Wells Selectively Grown by MOCVD," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JTuA92. Zhong et al., "Demonstration of High Power Blue-Green Light Emitting Diode on Semipolar (1122) Bulk GaN Substrate," 2007, Electron Letter, vol. 43, No. 15, pp. 825-826. Zhong et al., "High Power and High Efficiency Blue Light Emitting Diode On Freestanding Semipolar (1122) Bulk GaN Substrate," 2007, Applied Physics Letter, vol. 90, No. 23, pp. 233504-233504-3. International Search Report of PCT Application No. PCT/US2009/ 047107, dated Sep. 29, 2009, 4 pages. International Search Report of PCT Application No. PCT/US2009/ 046786, dated May 13, 2010, 2 pages. International Search Report of PCT Application No. PCT/US2009/ 52611, dated Sep. 29, 2009, 3 pages. International Search Report & Written Opinion of PCT Application No. PCT/US2010/030939, dated Jun. 16, 2010, 9 pages. International Search Report & Written Opinion of PCT Application No. PCT/US2010/049172, dated Nov. 17, 2010, 7 pages Non-Final Office Action of Sep. 24, 2012 for U.S. Appl. No. 12/789,303, 19 pages. Notice of Allowance of Dec. 21, 2012 for U.S. Appl. No. 12/789,303, 7 pages. Notice of Allowance of Dec. 10, 2013 for U.S. Appl. No. 13/739,961, 15 pages Notice of Allowance of Jan. 24, 2014 for U.S. Appl. No. 13/678,101, 12 pages Notice of Allowance of Jan. 11, 2014 for U.S. Appl. No. 14/035,045, Non-Final Office Action of Oct. 8, 2014 for U.S. Appl. No. 14/199,672, 22 pages. FIG. 1 Prior Art FIG. 2 FIG. 2B FIG. 3 S C U FIG. 3D (C) (C) LL #### LASER BASED DISPLAY METHOD AND **SYSTEM** #### CROSS-REFERENCE TO RELATED APPLICATIONS The present application is a division of U.S. application Ser. No. 14/035,045, filed on Sep. 24, 2013, which is a continuation of U.S. application Ser. No. 13/853,694 filed on Mar. 29, 2013, issued as U.S. Pat. No. 8,582,038, which is a continuation of U.S. application Ser. No. 12/789,303 filed on May 27, 2010, issued as U.S. Pat. No. 8,427,590, which claims priority to U.S. Provisional Patent Application No. 61/182,105, filed on May 29, 2009, and U.S. Provisional Patent Application No. 61/182,106, filed on May 29, 2009, 15 each of which is incorporated by reference herein for all purposes. The present application is also related to U.S. Provisional Patent Application No. 61/347,800, filed on May 24, 2010, entitled "SYSTEM AND METHOD OF MULTI-WAVELENGTH LASER APPARATUS", which is incorpo- 20 rated by reference herein for all purposes. The present application additionally is related to U.S. Provisional Patent Application No. 61/345,561, filed on May 17, 2010, entitled "METHOD AND SYSTEM FOR PROVIDING DIREC-TIONAL LIGHT SOURCES WITH BROAD SPECTRUM", 25 which is incorporated by reference herein for all purposes. This application is also related to U.S. patent application Ser. No. 12/749,466, filed on Mar. 29, 2010, which is commonly assigned and incorporated by reference herein. #### BACKGROUND OF THE INVENTION The present invention is directed to display technologies. More specifically, various embodiments of the present invention provide projection display systems where one or more 35 laser diodes and/or LEDs are used as light source for illustrating images. In one set of embodiments, the present invention provides projector systems that utilize blue and/or green laser fabricated using gallium nitride containing material. In another set of embodiments, the present invention provides 40 projection systems having digital lighting processing engines illuminated by blue and/or green laser devices. In a specific embodiment, the present invention provides a 3D display system. There are other embodiments as well. Large displays are becoming increasingly popular and are 45 expected to gain further traction in the coming years as LCD displays get cheaper for television and digital advertising becomes more popular at gas stations, malls, and coffee shops. Substantial growth (e.g., over 40%) has been seen in the past several years for large format displays (e.g., 40 inch 50 TVs), and consumers have grown accustomed to larger displays for laptops and PCs as well. As more viewing content is available via hand held device such as TV, internet and video, displays in handheld consumer electronics remain small ing for space and power. Therefore, improved systems for displaying images and/or videos are desired. #### BRIEF SUMMARY OF THE INVENTION The present invention is directed to display technologies. More specifically, various embodiments of the present invention provide projection display systems where one or more laser diodes are used as light source for illustrating images. In 65 one set of embodiments, the present invention provides projector systems that utilize blue and/or green laser fabricated 2 using gallium nitride containing material. In another set of embodiments, the present invention provides projection systems having digital lighting processing engines illuminated by blue and/or green laser devices. There are other embodiments as well. According to an embodiment, the present invention provides a projection system. The projection system includes an interface for receiving video. The system also includes an image processor for processing the video. The system includes a light source including a plurality of laser diodes. The plurality of laser diodes includes a blue laser diode. The blue laser diode is fabricated on non-polar oriented gallium nitride material. The system includes a power source electrically coupled to the light source. According to another embodiment, the present invention provides a projection system. The system includes an interface for receiving video. The system also includes an image processor for processing the video. The system includes a light source including a plurality of laser diodes. The plurality of laser diodes includes a blue laser diode. The blue laser diode is fabricated on semi-polar oriented gallium nitride material. The system also includes a power source electrically coupled to the light source. According to an embodiment, the present invention provides a projection apparatus. The projection apparatus includes a housing having an aperture. The apparatus also includes an input interface for receiving one or more frames of images. The apparatus includes a video processing module. Additionally, the apparatus includes a laser source. The 30 laser source includes a blue laser diode, a green laser diode, and a red laser diode. The blue laser diode is fabricated on a nonpolar or semipolar oriented Ga-containing substrate and has a peak operation wavelength of about 430 to 480 nm. The green laser diode is fabricated on a nonpolar or semipolar oriented Ga-containing substrate and has a peak operation wavelength of about 490 nm to 540 nm. The red laser could be fabricated from AlInGaP. The laser source is configured produce a laser beam by combining outputs from the blue, green, and red laser diodes. The apparatus also includes a laser driver module coupled to the laser source. The laser driver module generates three drive currents based on a pixel from the one or more frames of images. Each of the three drive currents is adapted to drive a laser diode. The apparatus also includes a microelectromechanical system (MEMS) scanning mirror, or "flying mirror", configured to project the laser beam to a specific location through the aperture resulting in a single picture. By rastering the pixel in two dimensions a complete image is formed. The apparatus includes an optical member provided within proximity of the laser source, the optical member being adapted to direct the laser beam to the MEMS scanning mirror. The apparatus includes a power source electrically coupled to the laser source and the MEMS scanning According to an embodiment, the present invention pro-(<3") with the keyboard, camera, and other features compet- 55 vides a projection apparatus. The projection apparatus includes a housing having an aperture. The apparatus also includes an input interface for receiving one or more frames of images. The apparatus includes a video processing module. Additionally, the apparatus includes a laser source. The laser source includes a blue laser diode, a green laser diode, and a red laser diode. The blue laser diode is fabricated on a nonpolar or semipolar oriented Ga-containing substrate and has a peak operation wavelength of about 430 to 480 nm. The green laser diode is fabricated on a nonpolar or semipolar oriented Ga-containing substrate and has a peak operation wavelength of about 490 nm to 540 nm. In this embodiment, the blue and the green laser diode would share the same substrate. The red laser could be fabricated from AlInGaP. The laser source is configured produce a laser beam by combining outputs from the blue, green, and red laser diodes. The apparatus also includes a laser driver module coupled to the laser source. The laser driver module generates three drive 5 currents based on a pixel from the one or more frames of images. Each of the
three drive currents is adapted to drive a laser diode. The apparatus also includes a MEMS scanning mirror, or "flying mirror", configured to project the laser beam to a specific location through the aperture resulting in a 10 single picture. By rastering the pixel in two dimensions a complete image is formed. The apparatus includes an optical member provided within proximity of the laser source, the optical member being adapted to direct the laser beam to the MEMS scanning mirror. The apparatus includes a power 15 source electrically coupled to the laser source and the MEMS scanning mirror. According to an embodiment, the present invention provides a projection apparatus. The projection apparatus includes a housing having an aperture. The apparatus also 20 includes an input interface for receiving one or more frames of images. The apparatus includes a video processing module. Additionally, the apparatus includes a laser source. The laser source includes a blue laser diode, a green laser diode, and a red laser diode. The blue laser diode is fabricated on a 25 nonpolar or semipolar oriented Ga-containing substrate and has a peak operation wavelength of about 430 to 480 nm. The green laser diode is fabricated on a nonpolar or semipolar oriented Ga-containing substrate and has a peak operation wavelength of about 490 nm to 540 nm. The red laser could be 30 fabricated from AlInGaP. In this embodiment, two or more of the different color lasers would be packaged together in the same enclosure. In this copackaging embodiment, the outputs from the blue, green, and red laser diodes would be combined into a single beam. The apparatus also includes a laser driver 35 module coupled to the laser source. The laser driver module generates three drive currents based on a pixel from the one or more frames of images. Each of the three drive currents is adapted to drive a laser diode. The apparatus also includes a microelectromechanical system (MEMS) scanning mirror, or 40 "flying mirror", configured to project the laser beam to a specific location through the aperture resulting in a single picture. By rastering the pixel in two dimensions a complete image is formed. The apparatus includes an optical member provided within proximity of the laser source, the optical 45 member being adapted to direct the laser beam to the MEMS scanning mirror. The apparatus includes a power source electrically coupled to the laser source and the MEMS scanning According to another embodiment, the present invention 50 provides a projection apparatus. The apparatus includes a housing having an aperture. The apparatus includes an input interface for receiving one or more frames of images. The apparatus includes a laser source. The laser source includes a blue laser diode, a green laser diode, and a red laser diode. The 55 blue laser diode is fabricated on a nonpolar or semipolar oriented Ga-containing substrate and has a peak operation wavelength of about 430 to 480 nm. The green laser diode is fabricated on a nonpolar or semipolar oriented Ga-containing substrate and has a peak operation wavelength of about 490 60 nm to 540 nm. The red laser could be fabricated from AlIn-GaP. The laser source is configured produce a laser beam by combining outputs from the blue, green, and red laser diodes. The apparatus includes a digital light processing (DLP) chip comprising a digital mirror device. The digital mirror device 65 including a plurality of mirrors, each of the mirrors corresponding to one or more pixels of the one or more frames of 4 images. The apparatus includes a power source electrically coupled to the laser source and the digital light processing chip. Many variations of this embodiment could exist, such as an embodiment where the green and blue laser diode share the same substrate or two or more of the different color lasers could be housed in the same packaged. In this copackaging embodiment, the outputs from the blue, green, and red laser diodes would be combined into a single beam. According to another embodiment, the present invention provides a projection apparatus. The apparatus includes a housing having an aperture. The apparatus includes an input interface for receiving one or more frames of images. The apparatus includes a laser source. The laser source includes a blue laser diode, a green laser diode, and a red laser diode. The blue laser diode is fabricated on a nonpolar or semipolar oriented Ga-containing substrate and has a peak operation wavelength of about 430 to 480 nm. The green laser diode is fabricated on a nonpolar or semipolar oriented Ga-containing substrate and has a peak operation wavelength of about 490 nm to 540 nm. The red laser could be fabricated from AlIn-GaP. The apparatus includes a digital light processing chip (DLP) comprising three digital mirror devices. Each of the digital mirror devices includes a plurality of mirrors. Each of the mirrors corresponds to one or more pixels of the one or more frames of images. The color beams are respectively projected onto the digital mirror devices. The apparatus includes a power source electrically coupled to the laser sources and the digital light processing chip. Many variations of this embodiment could exist, such as an embodiment where the green and blue laser diode share the same substrate or two or more of the different color lasers could be housed in the same packaged. In this copackaging embodiment, the outputs from the blue, green, and red laser diodes would be combined into a single beam. As an example, the color wheel may include phosphor material that modifies the color of light emitted from the light source. In a specific embodiment, the color wheel includes multiple regions, each of the regions corresponding to a specific color (e.g., red, green, blue, etc.). In an exemplary embodiment, a projector includes a light source that includes blue and red light sources. The color wheel includes a slot for the blue color light and a phosphor containing region for converting blue light to green light. In operation, the blue light source (e.g., blue laser diode or blue LED) provides blue light through the slot and excites green light from the phosphor containing region; the red light source provides red light separately. The green light from the phosphor may be transmitted through the color wheel, or reflected back from it. In either case the green light is collected by optics and redirected to the microdisplay. The blue light passed through the slot is also directed to the microdisplay. The blue light source may be a laser diode or LED fabricated on non-polar or semi-polar oriented GaN. Alternatively, a green laser diode may be used, instead of a blue laser diode with phosphor, to emit green light. It is to be appreciated that can be other combinations of colored light sources and color wheels thereof. As another example, the color wheel may include multiple phosphor materials. For example, the color wheel may include both green and red phosphors in combination with a blue light source. In a specific embodiment, the color wheel includes multiple regions, each of the regions corresponding to a specific color (e.g., red, green, blue, etc.). In an exemplary embodiment, a projector includes a light source that includes a blue light source. The color wheel includes a slot for the blue laser light and two phosphor containing regions for converting blue light to green light, and blue light and to red light, respectively. In operation, the blue light source (e.g., blue laser diode or blue LED) provides blue light through the slot and excites green light and red light from the phosphor containing regions. The green and red light from the phosphor may be transmitted through the color wheel, or reflected back from it. In either case the green and red light is collected by optics and redirected to the microdisplay. The blue light source may be a laser diode or LED fabricated on non-polar or semi-polar oriented GaN. It is to be appreciated that can be other combinations of colored light sources and color wheels thereof. As another example, the color wheel may include blue, green, and red phosphor materials. For example, the color wheel may include blue, green and red phosphors in combination with a ultra-violet (UV) light source. In a specific embodiment, color wheel includes multiple regions, each of 15 the regions corresponding to a specific color (e.g., red, green, blue, etc.). In an exemplary embodiment, a projector includes a light source that includes a UV light source. The color wheel includes three phosphor containing regions for converting UV light to blue light, UV light to green light, and UV light 20 and to red light, respectively. In operation, the color wheel emits blue, green, and red light from the phosphor containing regions in sequence. The blue, green and red light from the phosphor may be transmitted through the color wheel, or reflected back from it. In either case the blue, green, and red 25 light is collected by optics and redirected to the microdisplay. The UV light source may be a laser diode or LED fabricated on non-polar or semi-polar oriented GaN. It is to be appreciated that can be other combinations of colored light sources and color wheels thereof. According to yet another embodiment, the present invention provides a projection apparatus. The apparatus includes a housing having an aperture. The apparatus includes an input interface for receiving one or more frames of images. The apparatus includes a laser source. The laser source includes a 35 blue laser diode, a green laser diode, and a red laser diode. The blue laser diode is fabricated on a nonpolar or semipolar oriented Ga-containing substrate and has a peak operation wavelength of about 430 to 480 nm. The green laser diode is fabricated on a nonpolar or semipolar oriented Ga-containing 40 substrate and has a peak operation wavelength of about 490 nm to 540 nm. The red laser could be fabricated
from AlIn-GaP. he green laser diode has a wavelength of about 490 nm to 540 nm. The laser source is configured produce a laser beam by coming outputs from the blue, green, and red laser 45 diodes. The apparatus includes a digital light processing chip comprising three digital mirror devices. Each of the digital mirror devices includes a plurality of mirrors. Each of the mirrors corresponds to one or more pixels of the one or more frames of images. The color beams are respectively projected 50 onto the digital mirror devices. The apparatus includes a power source electrically coupled to the laser sources and the digital light processing chip. Many variations of this embodiment could exist, such as an embodiment where the green and blue laser diode share the same substrate or two or more of the 55 different color lasers could be housed in the same packaged. In this copackaging embodiment, the outputs from the blue, green, and red laser diodes would be combined into a single As an example, the color wheel may include phosphor 60 material that modifies the color of light emitted from the light source. In a specific embodiment, the color wheel includes multiple regions, each of the regions corresponding to a specific color (e.g., red, green, blue, etc.). In an exemplary embodiment, a projector includes a light source that includes 65 blue and red light sources. The color wheel includes a slot for the blue color light and a phosphor containing region for 6 converting blue light to green light. In operation, the blue light source (e.g., blue laser diode or blue LED) provides blue light through the slot and excites green light from the phosphor containing region; the red light source provides red light separately. The green light from the phosphor may be transmitted through the color wheel, or reflected back from it. In either case the green light is collected by optics and redirected to the microdisplay. The blue light passed through the slot is also directed to the microdisplay. The blue light source may be a laser diode or LED fabricated on non-polar or semi-polar oriented GaN. Alternatively, a green laser diode may be used, instead of a blue laser diode with phosphor, to emit green light. It is to be appreciated that can be other combinations of colored light sources and color wheels thereof. As another example, the color wheel may include multiple phosphor materials. For example, the color wheel may include both green and red phosphors in combination with a blue light source. In a specific embodiment, the color wheel includes multiple regions, each of the regions corresponding to a specific color (e.g., red, green, blue, etc.). In an exemplary embodiment, a projector includes a light source that includes a blue light source. The color wheel includes a slot for the blue laser light and two phosphor containing regions for converting blue light to green light, and blue light and to red light, respectively. In operation, the blue light source (e.g., blue laser diode or blue LED) provides blue light through the slot and excites green light and red light from the phosphor containing regions. The green and red light from the phosphor may be transmitted through the color wheel, or reflected back from it. In either case the green and red light is collected by optics and redirected to the microdisplay. The blue light source may be a laser diode or LED fabricated on non-polar or semi-polar oriented GaN. It is to be appreciated that can be other combinations of colored light sources and color wheels thereof. As another example, the color wheel may include blue, green, and red phosphor materials. For example, the color wheel may include blue, green and red phosphors in combination with a ultra-violet (UV) light source. In a specific embodiment, color wheel includes multiple regions, each of the regions corresponding to a specific color (e.g., red, green, blue, etc.). In an exemplary embodiment, a projector includes a light source that includes a UV light source. The color wheel includes three phosphor containing regions for converting UV light to blue light, UV light to green light, and UV light and to red light, respectively. In operation, the color wheel emits blue, green, and red light from the phosphor containing regions in sequence. The blue, green and red light from the phosphor may be transmitted through the color wheel, or reflected back from it. In either case the blue, green, and red light is collected by optics and redirected to the microdisplay. The UV light source may be a laser diode or LED fabricated on non-polar or semi-polar oriented GaN. It is to be appreciated that can be other combinations of colored light sources and color wheels thereof. Various benefits are achieved over pre-existing techniques using the present invention. In particular, the present invention enables a cost-effective projection systems that utilizes efficient light sources. In a specific embodiment, the light source can be manufactured in a relatively simple and cost effective manner. Depending upon the embodiment, the present apparatus and method can be manufactured using conventional materials and/or methods according to one of ordinary skill in the art. In one or more embodiments, the laser device is capable of multiple wavelengths. Of course, there can be other variations, modifications, and alternatives. Depending upon the embodiment, one or more of these ben- efits may be achieved. These and other benefits may be described throughout the present specification and more particularly below. The present invention achieves these benefits and others in the context of known process technology. However, a further understanding of the nature and advantages of the present invention may be realized by reference to the latter portions of the specification and attached drawings. #### BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram illustrating a conventional projection system. FIG. 2 is a simplified diagram illustrating a projection device according to an embodiment of the present invention. FIG. 2A is a detailed cross-sectional view of a laser device 200 fabricated on a {20-21} substrate according to an embodiment of the present invention. FIG. 2B is a simplified diagram illustrating a projector $_{\rm 20}$ having LED light sources. FIG. 3 is an alternative illustration of a projection device according to an embodiment of the present invention. FIG. **3**A is a simplified diagram illustrating a laser diodes packaged together according to an embodiment of the present 25 invention. FIG. 3B is a diagram illustrating a cross section of active region with graded emission wavelength according to an embodiment of the present invention. FIG. 3C is a simplified diagram illustrating a cross section of multiple active regions according to an embodiment of the present invention. FIG. 3D is a simplified diagram illustrating a projector having LED light sources. FIG. 4 is a simplified diagram illustrating a projection ³⁵ device according to an embodiment of the present invention. FIG. 4A is a simplified diagram illustrating laser diodes integrated into single package according to an embodiment of the present invention. FIG. 5 is a simplified diagram of a DLP projection device 40 according to an embodiment of the present invention. FIG. 5A is a simplified diagram illustrating a DLP projector according to an embodiment of the present invention. FIG. **6** is simplified diagram illustrating a 3-chip DLP projection system according to an embodiment of the present 45 invention. FIG. 7 is a simplified diagram illustrating 3D display involving polarized images filtered by polarized glasses. FIG. **8** is a simplified diagram illustrating a 3D projection system according to an embodiment of the present invention. ⁵⁰ FIG. 9 is a simplified diagram illustrating a LCOS projection system 900 according to an embodiment of the present invention. #### DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to display technologies. More specifically, various embodiments of the present invention provide projection display systems where one or more laser diodes are used as light source for illustrating images. In one set of embodiments, the present invention provides projector systems that utilize blue and/or green laser fabricated using gallium nitride containing material. In another set of embodiments, the present invention provides projection systems having digital lighting processing engines illuminated 65 by blue and/or green laser devices. There are other embodiments as well. 8 As explained above, conventional display type are often inadequate. Miniature projectors address this problem by projecting large images (up to 60 inch and above) from the hand held device, allowing movies, internet surfing and other images to be shared in a size format consistent with the displays customers are accustomed to. As a result, pocket projectors, standalone companion pico projectors, and embedded pico projectors in mobile devices such as phones are becoming increasingly available. Present day commercial InGaN-based lasers and LEDs are grown on the polar c-plane of the GaN crystal. It is well known that InGaN light emitting layers deposited on this conventional GaN orientation suffer from internal polarization-related electric fields. In these structures, spontaneous polarization results from charge asymmetry in the GaN bonding, while piezoelectric polarization is the product of strain. In quantum well structures, these polarization fields spatially separate the electron and hole wave functions, reducing their radiative recombination efficiency. Due to the strain dependence of piezoelectric polarization, these internal fields grow stronger for with increased-indium-content in the emitting layers required for blue and especially for green lasers and LEDs. In addition to a reduced radiative recombination coefficient to hinder LED brightness, the internal
electric fields induce the quantum confined Stark effect (QCSE) within the light emitting quantum well layers. This effect results in a blueshift of the peak emission wavelength with increased carrier density in the quantum well layers. Since the carrier density is increased with increased current, a blue or green LED will undergo a shift in peak wavelength as a function of current. Such wavelength dependence on drive current would not be ideal for display applications where the LED is subjected to a current modulation scheme since the color will change with current. In a laser diode the carrier density is increased with increasing current up until the onset of laser threshold where the gain overcomes the loss in the cavity. For achieving lasing wavelengths in the blue and green region, such a blue-shift in the peak wavelength below threshold forces the growth of light emitting layers with increased indium content to compensate the blue-shift. It is well-known that such an increase in indium content can result in degraded material quality due to increased strain and indium-segregation. For the realization of highly efficient blue and green lasers and LEDs, it is therefore desirable to mitigate or completely eliminate polarization-related electric fields. It has been long understood that growth of device structures on non-conventional GaN orientations, such as the nonpolar a-plane or m-plane or on semipolar planes between nonpolar planes and the polar c-plane, the polarization fields could be eliminated or mitigated. On these novel crystal planes, unique design freedoms became available to both the epitaxial structure and the device structure. Further, the anisotropic strain of InGaN films grown on nonpolar and semipolar substrates results in a reduced effective hole mass, which can increase the differential gain and reduce the transparency current density in laser diodes. Devices such as blue and green lasers and LEDs fabricated on nonpolar and semipolar planes offer exciting potential for improved performance with higher radiative recombination efficiency, reduced peak wavelength blue-shift with drive current, increased device design flexibility, and favorable epitaxial growth quality Typical projectors based on solid-state emitters include: a light source (laser or LED), optics, micro-display such as a liquid crystal on silicon (LCOS) or a digital micro-mirror device (DMD), driver boards, and power source (i.e., battery or power adapter). Depending on the application, projection systems can utilize polarized or unpolarized lights. For example, single scanner based projection systems (e.g., pico projectors) and DLP based systems typically use unpolarized light source. For certain applications, such as LCOS based projection systems, 5 polarized light source is desirable. Usually, blue and green (maybe red) LEDs used in conventional projectors are unpolarized (or demonstrate low polarization ratio), thereby resulting in excessive optical losses from polarization dependent optical components and exhibit a poor spatial mode quality, which require large LCOS or LCD chips, and are not viable for compact designs because the light is not focusable into a small area. Due to the splitting of the X and Y electronic valence bands on nonpolar and semipolar GaN, the light emission from devices such as LEDs fabricated on these platforms is inherently polarized. By employing semipolar and/or nonpolar GaN based LEDs into projection displays using LCOS technologies or other light-valves requiring polarized light, the optical losses associated with the LEDs would be minimized without having to utilize added compo- 20 nents such as polarization recyclers which increase the complexity and cost of the system. Conventional projection system often use laser and/or LED as light sources to illuminate images. Typically, laser light source provides better performance than LED light sources in projection systems. FIG. 1 is a diagram illustrating a conventional projection system. As shown, blue, green, and red laser lights are combined into a laser beam, which is then projected to an MEMS scanning mirror. In a conventional projection system such as the one illustrated in FIG. 1, a green second-harmonic generation (SHG) laser is used to provide green laser light. Currently there is no direct diode solution for green laser emission, forcing the use of frequency doubled 1060 nm diode lasers which are expensive, bulky, difficult to modulate at high speeds, and emit a 35 narrow spectrum causing speckle in the image. Furthermore, since these devices require generation of a second harmonic using periodically-pulsed lithium niobate (PPLN), there are significant inefficiencies associated with the technology. First there is the efficiency of the 1060 nm device itself. 40 Second there is the optical coupling losses associated with guiding the light into and out of the PPLN. Third there is the conversion loss within the PPLN. Finally there is the loss associated with cooling the components to a precise temperature. In order to manufacturer highly efficient display that maximize battery life and minimize cost, size, and weight, optical losses must be minimized from the system. Sources of optical losses in systems include, but are not limited to, losses from optical elements whose transmission is polarization dependent. In many compact projector such as pico projectors, a micro-display technology is used which is highly polarization sensitive, such as LCOS or LCD. A common LCOS based displays typically need highly polarized light sources based on the nature of the liquid crystal display technology. In various embodiments, the present invention provides blue and green direct diode GaN based lasers that offers offer highly polarized output, single spatial mode, moderate to large spectral width, high efficiency, and high modulation rates ideal for various types of projection and displays, such 60 as pico projectors, DLP projectors, liquid crystal based displays (e.g., liquid crystal on silicon or "LCOS"), and others. It is to be appreciated that by using highly polarized light source in projection displays as provided by embodiments of the present invention, the optical efficiency can be maximized 65 with minimal costs and maximum flexibility in the selection on optical components. Conventional illumination sources 10 such as unpolarized LEDs and systems thereof, where complicated optics are required for polarization recycling to increase the efficiency from the non-polarized light source. In contrast, by forming blue and green laser and/or LEDs on nonpolar or semipolar GaN the light output will be highly polarized eliminating the need for additional optics to deal with polarization. As described in the present invention, direct diode lasers having GaN based laser are used for blue and green sources. Conventional c-plane GaN lasers emits unpolarized or near-unpolarized light when laser is below threshold. After the laser reaches threshold the output light will become polarized with increased current. In contrast, lasers fabricated on non-polar or semipolar GaN according to embodiments of the present invention emit polarized light below threshold and will also have an increased polarization ratio with increased current. By using highly polarized light source in projection displays, the optical efficiency can be maximized with minimal costs and maximum flexibility in the selection on optical components. In order to manufacturer a highly efficient displays that maximize battery life and minimize cost, size, and weight, optical losses must be minimized from the system. For LCOS systems, convention LCOS is often shrunk to be as small as possible to fit into a tiny volume and also to reduce cost. Therefore, for maximum optical efficiency and minimal power consumption, size, and weight in the display, laser sources are required with high optical spatial brightness. Conventional LEDs exhibit a poor spatial mode quality, thus requiring large LCOS or LCD chips, and are not viable for compact designs because the light is not focusable into a small area. In contrast, blue and green direct diode GaN based lasers according to the present invention exhibit a single spatial mode for maximum throughput. Embodiments of the present invention also provides the benefit of reduced speckling. For example, frequency doubled 1060 nm diode lasers used in conventional systems produces a narrow spectrum which causes speckle in the image. Direct diode visible lasers (e.g., green laser) used in embodiments of the present invention offer as much as >100× increase in the spectrum, substantially reducing speckle in the image and reducing the need for additional expensive and bulky components. Moreover, frequency doubled 1060 nm diode lasers used in conventional system are inefficient because of the second harmonic generation. Direct diode visible lasers used in the present invention offer the potential for substantially higher efficiency with the benefit of reduced optical components and size and weight of the system. As explained above, a typical miniature projectors (e.g., pico projector) includes the following components: a light source (laser or LED), optics, micro-display such as a LCOS or a DMD display; driver boards power source, i.e., battery or power adapter Currently, blue and green (maybe red) LEDs are unpolarized leading to excessive optical losses and exhibit a poor spatial mode quality, which require large LCOS or LCD chips, and are not viable for compact designs because the light is not focusable into a small area. Due to the splitting of the X and Y electronic valence bands on nonpolar and semipolar GaN, the light emission from devices such as LEDs fabricated on these platforms is inherently polarized. By employing semipolar and/or nonpolar GaN based LEDs into projection displays or other LCOS technologies, the optical losses associated with unpolarized LEDs would be
mini- mized without having to utilize added components such as polarization recyclers which increase the complexity and cost of the system. Currently there is no direct diode solution for green laser emission, forcing the use of frequency doubled 1060 nm 5 diode lasers which are expensive, bulky, difficult to modulate at high speeds, and emit a narrow spectrum causing speckle in the image. Furthermore, since these devices require generation of a second harmonic using periodically-pulsed lithium niobate (PPLN), there are significant inefficiencies associated with the technology. First there is the efficiency of the 1060 nm device itself, second there is the optical coupling losses associated with guiding the light into and out of the PPLN, third there is the conversion loss within the PPLN, And finally there is the loss associated with cooling the components to a 15 precise temperature. The blue and green direct diode GaN based lasers according to embodiments of the present invention offers highly polarized output, single spatial mode, moderate to large spectral width, high efficiency, and high modulation rates ideal for 20 liquid crystal based displays. Conventional approaches for frequency doubling achieves high spatial brightness, but it does not conveniently enable high modulation frequencies and produces image artifacts when attempted. This limits the modulation frequency of the 25 source to ~100 MHz where amplitude (analog) modulation must be utilized. With increased frequency capability to ~300 MHz, pulsed (digital) modulation could be used which would simplify the system and eliminate the need for look-up tables. With a direct diode solution afford by embodiments of the 30 present invention, modulation frequencies beyond 300 MHz can be achieved and digital operation can be realized. Non-polar and/or semipolar based GaN lasers hold great promise for enabling the direct diode green solution, and therefore, digital scanning micro mirror projectors. FIG. 2 is a simplified diagram illustrating a projection device according to an embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims. One of ordinary skill in the art would recognize many variations, alternatives, and modifications. A projection system 250 includes a MEMS scanning mirror 251, a mirror 252, an optical member 254, green laser diode 253, red laser diode 256, and blue laser diode 255. As an example, the projection system 250 is a pico projector. In addition to the components illustrated in FIG. 2, the 45 projection system 250 also includes a housing having an aperture and an input interface for receiving one or more frames of images. The projection system 250 also includes a video processing module. In one embodiment, the video processing module is electrically coupled to an ASIC for driving 50 the laser diodes and the MEMS scanning mirrorscanning mirror 251. In one embodiment, the laser diodes together with the optical member 254 form a laser source. The green laser diode 253 is characterized by a wavelength of about 490 nm to 540 55 nm. The laser source is configured produce a laser beam by combining outputs from the blue, green, and red laser diodes. Depending on the application, various types of optical components may be used to combine the light outputs from the laser diodes. For example, optical components can be dichroic lenses, prisms, converging lenses, etc. In a specific embodiment, the combined laser beam is polarized. In one embodiment, a laser driver module is provided. Among other things, the laser driver module is adapted to adjust the amount of power to be provided to the laser diodes. 65 For example, the laser driver module generates three drive currents based one or more pixels from the one or more 12 frames of images, each of the three drive currents being adapted to drive a laser diode. In a specific embodiment, the laser driver module is configured to generate pulse-modulated signal at a frequency range of about 50 to 300 MHz. The MEMS scanning mirror **251** is configured to project the laser beam to a specific location through the aperture. For example, the MEMS scanning mirror **251** process one pixel at a specific time onto a specific location corresponding to an pixel of an image. At a high frequency, pixels projected by the MEMS scanning mirror **251** form images. The MEMS scanning mirror 251 receives light from the laser source though mirror 252. As shown, the mirror 252 is provided within proximity of the laser source. Among other things, the optical member is adapted to direct the laser beam to the MEMS scanning mirror 251. It is to be appreciated the projection system 250 include other components as well, such as a power source electrically coupled to the laser source and the MEMS scanning mirror 251. Other components can include buffer memory, communication interface, network interface, etc. As described above, a key component of the projection system 250 is the laser light source. In contrast to conventional projection systems, embodiments of the present invention use highly efficient laser diodes. In a specific embodiment, the blue laser diode operates in a single lateral mode. For example, the blue laser diode is characterized by a spectral width of about 0.5 nm to 2 nm. In a specific embodiment, the blue laser diode is designed for integration into portable applications such as embedded and companion pico projectors and features 60 mW of 445 nm single mode output power in a compact TO-38 package. For example, the blue lasers operate with high efficiency and require minimal power consumption over a broad temperature range, meeting the demanding requirements of consumer projection displays, defense pointers and illuminators, biomedical instrumentation and therapeutics, and industrial imaging applications. According to various embodiments, blue lasers are based on the Indium Gallium Nitride (InGaN) semiconductor technology and are fabricated on GaN substrates. In various embodiments, the blue and green laser diodes are fabricated using GaN material. The blue laser diode may be semi-polar or non-polar. Similarly, the green laser diode can be semi-polar or non-polar. For example, the red laser diode can be fabricated using GaAlInP material. For example, following combinations of laser diodes are provided, but there could be others: Blue polar+Green nonpolar+Red* AlInGaP Blue polar+Green semipolar+Red* AlInGaP Blue polar+Green polar+Red* AlInGaP Blue semipolar+Green nonpolar+Red* AlInGaP Blue semipolar+Green semipolar+Red* AlInGaP Blue semipolar+Green polar+Red* AlInGaP Blue nonpolar+Green nonpolar+Red* AlInGaP Blue nonpolar+Green semipolar+Red* AlInGaP Blue nonpolar+Green polar+Red* AlInGaP As an example, blue and green laser diodes can be manufactured on m-plane. In a specific embodiment, a blue or green laser diode includes a gallium nitride substrate member having the off-cut m-plane crystalline surface region. In a specific embodiment this offcut angle is between -2.0 and -0.5 degrees toward the c-plane. In a specific embodiment, the gallium nitride substrate member is a bulk GaN substrate characterized by having a semipolar or non-polar crystalline surface region, but can be others. In a specific embodiment, the bulk nitride GaN substrate comprises nitrogen and has a surface dislocation density below $10^5\,\mathrm{cm}^{-2}$. The nitride crystal or wafer may comprise $\mathrm{Al}_x\mathrm{In}_y\mathrm{Ga}_{1-x-y}\mathrm{N}$, where $0\leq x,\ y,$ x+y \le 1. In one specific embodiment, the nitride crystal comprises GaN, but can be others. In one or more embodiments, the GaN substrate has threading dislocations, at a concentration between about 10^5 cm⁻² and about 10^8 cm⁻², in a direction that is substantially orthogonal or oblique with respect to the surface. As a consequence of the orthogonal or oblique orientation of the dislocations, the surface dislocation density is below about 10^5 cm⁻². In a specific embodiment, the device can be fabricated on a slightly off-cut semipolar substrate as described in U.S. patent application Ser. No. 12/749,466, file Mar. 29, 2010, which is commonly assigned and incorporated by reference herein. In a specific embodiment where the laser is fabricated on the {20-21} semipolar GaN surface orientation, the device has a laser stripe region formed overlying a portion of the 15 off-cut crystalline orientation surface region. In a specific embodiment, the laser stripe region is characterized by a cavity orientation substantially in a projection of a c-direction, which is substantially normal to the a-direction. In a specific embodiment, the laser strip region has a first end and 20 a second end. In a preferred embodiment, the laser cavity is oriented formed in a projection of the c-direction on a {20-21} gallium and nitrogen containing substrate having a pair of cleaved mirror structures, at the end of cavity. Of course, there can be other variations, modifications, and alternatives. In a specific embodiment where the laser is fabricated on the nonpolar m-plane GaN surface orientation, the device has a laser stripe region formed overlying a portion of the off-cut crystalline orientation surface region. In a specific embodiment, the laser stripe region is characterized by a cavity 30 orientation substantially in the c-direction, which is substantially normal to the a-direction. In a specific embodiment, the laser strip region has a first end and a second end. In a preferred embodiment, the laser cavity is oriented formed in the c-direction on an m-plane gallium and nitrogen containing substrate having a pair of cleaved mirror structures, at the end of cavity. Of course, there can be other variations, modifications, and alternatives. In a preferred embodiment, the device has a first cleaved facet provided on the first end of the laser stripe region and a 40 second cleaved facet provided on the second
end of the laser stripe region. In one or more embodiments, the first cleaved is substantially parallel with the second cleaved facet. Mirror surfaces are formed on each of the cleaved surfaces. The first cleaved facet comprises a first mirror surface. In a preferred 45 embodiment, the first mirror surface is provided by a top-side skip-scribe scribing and breaking process. The scribing process can use any suitable techniques, such as a diamond scribe or laser scribe or combinations. In a specific embodiment, the first mirror surface comprises a reflective coating. The reflec- 50 tive coating is selected from silicon dioxide, hafnia, and titania, tantalum pentoxide, zirconia, including combinations, and the like. Depending upon the embodiment, the first mirror surface can also comprise an anti-reflective coating. Of course, there can be other variations, modifications, and alter- 55 natives. Also in a preferred embodiment, the second cleaved facet comprises a second mirror surface. The second mirror surface is provided by a top side skip-scribe scribing and breaking process according to a specific embodiment. Preferably, the 60 scribing is diamond scribed or laser scribed or the like. In a specific embodiment, the second mirror surface comprises a reflective coating, such as silicon dioxide, hafnia, and titania, tantalum pentoxide, zirconia, combinations, and the like. In a specific embodiment, the second mirror surface comprises an 65 anti-reflective coating. Of course, there can be other variations, modifications, and alternatives. 14 In a specific embodiment, the laser stripe has a length and width. The length ranges from about 50 microns to about 3000 microns. The strip also has a width ranging from about 0.5 microns to about 50 microns, but can be other dimensions. In a specific embodiment, the width is substantially constant in dimension, although there may be slight variations. The width and length are often formed using a masking and etching process, which are commonly used in the art. In a specific embodiment, the present invention provides an alternative device structure capable of emitting 501 nm and greater light in a ridge laser embodiment. The device is provided with one or more of the following epitaxially grown elements, but is not limiting: an n-GaN cladding layer with a thickness from 100 nm to 5000 nm with Si doping level of 5E17 to 3E18 cm-3 an n-side SCH layer comprised of InGaN with molar fraction of indium of between 3% and 10% and thickness from 20 to 100 nm multiple quantum well active region layers comprised of at least two 2.0-8.5 nm InGaN quantum wells separated by thin 2.5 nm and greater, and optionally up to about 8 nm, GaN barriers a p-side SCH layer comprised of InGaN with molar a fraction of indium of between 1% and 10% and a thickness 25 from 15 nm to 100 nm an electron blocking layer comprised of AlGaN with molar fraction of aluminum of between 12% and 22% and thickness from 5 nm to 20 nm and doped with Mg. a p-GaN cladding layer with a thickness from 400 nm to 1000 nm with Mg doping level of 2E17 cm-3 to 2E19 cm-3 a p++-GaN contact layer with a thickness from 20 nm to 40 nm with Mg doping level of 1E19 cm-3 to 1E21 cm-3 In a specific embodiment, the laser device is fabricated on a {20-21} semipolar Ga-containing substrate. But it is to be understood that the laser device can be fabricated on other types of substrates such as nonpolar oriented Ga-containing substrate as well. While light source based on red, green, and blue color sources are widely used, other combinations are possible as well. According to an embodiment of the present invention, the light source used in a projection system combines a yellow light source with the red, green, and blue light sources. For example, the addition of yellow light sources improves the color characteristics (e.g., allowing for wider color gamut) of RBG based projection and display systems. In a specific embodiment, an RGYB light sources is used for a projection system. The vellow light source can be a vellow laser diode manufactured from gallium nitride material or AlInGaP material. In various embodiments, the yellow light source can have a polar, non-polar, or semi-polar orientation. It is to be appreciated that projection systems according to the present invention may use light sources in other colors as well. For example, other colors include cyan, magenta, and others. In a specific embodiment, the laser diodes of the different colors are separately packaged. In another specific embodiment, the laser diodes of two or more of the different colors are copackaged. In yet another specific embodiment, the laser diodes of two or more of the different colors are fabricated on the same substrate. FIG. 2A is a detailed cross-sectional view of a laser device 200 fabricated on a {20-21} substrate according to an embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims herein. One of ordinary skill in the art would recognize other variations, modifications, and alternatives. As shown, the laser device includes gallium nitride substrate 203, which has an underlying n-type metal back contact region 201. In a specific embodiment, the metal back contact region is made of a suitable material such as those noted below and others. Further details of the contact region can be found throughout the present specification and more particularly below. In a specific embodiment, the device also has an overlying 5 n-type gallium nitride layer 205, an active region 207, and an overlying p-type gallium nitride layer structured as a laser stripe region 209. In a specific embodiment, each of these regions is formed using at least an epitaxial deposition technique of metal organic chemical vapor deposition (MOCVD), 10 molecular beam epitaxy (MBE), or other epitaxial growth techniques suitable for GaN growth. In a specific embodiment, the epitaxial layer is a high quality epitaxial layer overlying the n-type gallium nitride layer. In some embodiments the high quality layer is doped, for example, with Si or 15 O to form n-type material, with a dopant concentration between about 10¹⁶ cm⁻³ and 10²⁰ cm⁻³. In a specific embodiment, an n-type $Al_{\nu}In_{\nu}Ga_{1-\nu-\nu}N$ layer, where $0 \le u$, v, $u+v \le 1$, is deposited on the substrate. In a specific embodiment, the carrier concentration may lie in the 20 range between about 10^{16} cm⁻³ and 10^{20} cm⁻³. The deposition may be performed using MOCVD or MBE. Of course, there can be other variations, modifications, and alternatives. As an example, the bulk GaN substrate is placed on a susceptor in an MOCVD reactor. After closing, evacuating, 25 and back-filling the reactor (or using a load lock configuration) to atmospheric pressure, the susceptor is heated to a temperature between about 900 and about 1200 degrees Celsius in the presence of a nitrogen-containing gas. In one specific embodiment, the susceptor is heated to approximately 1100 degrees Celsius under flowing ammonia. A flow of a gallium-containing metalorganic precursor, such as trimethylgallium (TMG) or triethylgallium (TEG) is initiated, in a carrier gas, at a total rate between approximately 1 and 50 standard cubic centimeters per minute (sccm). The carrier gas 35 may comprise hydrogen, helium, nitrogen, or argon. The ratio of the flow rate of the group V precursor (ammonia) to that of the group III precursor (trimethylgallium, triethylgallium, trimethylindium, trimethylaluminum) during growth is between about 2000 and about 12000. A flow of disilane in a 40 carrier gas, with a total flow rate of between about 0.1 and 10 sccm, is initiated. In a specific embodiment, the laser stripe region is made of the p-type gallium nitride layer 209. In a specific embodiment, the laser stripe is provided by an etching process 45 selected from dry etching or wet etching. In a preferred embodiment, the etching process is dry, but can be others. As an example, the dry etching process is an inductively coupled process using chlorine bearing species or a reactive ion etching process using similar chemistries. Again as an example, 50 the chlorine bearing species are commonly derived from chlorine gas or the like. The device also has an overlying dielectric region, which exposes 213 contact region. In a specific embodiment, the dielectric region is an oxide such as silicon dioxide or silicon nitride, but can be others. The con- 55 tact region is coupled to an overlying metal layer 215. The overlying metal layer is a multilayered structure containing palladium and gold (Pd/Au), platinum and gold (Pt/Au), nickel gold (Ni/Au), but can be others. Of course, there can be other variations, modifications, and alternatives. In a specific embodiment, the laser device has active region 207. The active region can include one to twenty quantum well regions according to one or more embodiments. As an example following deposition of the n-type $Al_uIn_vGa_{1-u-v}N$ layer for a predetermined period of time, so as to achieve a 65 predetermined thickness, an active layer is deposited. The active layer may be comprised of multiple quantum wells, 16 with 2-10 quantum wells. The quantum wells may be comprised of InGaN with GaN barrier layers separating them. In other embodiments, the well layers and barrier layers comprise $Al_wIn_xGa_{1-w-x}N$ and $Al_yIn_zGa_{1-y-z}N$, respectively, where $0 \le w$, x, y, z, w+x, $y+z \le 1$, where w < u, y and/or x > v, z so that the bandgap of the well layer(s) is less than that of the barrier layer(s) and the n-type layer. The well layers and barrier layers may each have a thickness between about 1 nm and about 20 nm. The composition and structure of the active layer are chosen to provide light emission at a preselected wavelength. The active layer may be left undoped (or unintentionally doped) or may be doped n-type or p-type. Of course, there can be other variations,
modifications, and alternatives In a specific embodiment, the active region can also include an electron blocking region, and a separate confinement heterostructure. In some embodiments, an electron blocking layer is preferably deposited. The electron-blocking layer may comprise Al₃In₁Ga₁₋ѕ₂₁N, where 0≤ѕ, t, ѕ+t≤1, with a higher bandgap than the active layer, and may be doped p-type. In one specific embodiment, the electron blocking layer comprises AlGaN. In another embodiment, the electron blocking layer comprises an AlGaN/GaN super-lattice structure, comprising alternating layers of AlGaN and GaN, each with a thickness between about 0.2 nm and about 5 nm. In Of course, there can be other variations, modifications, and alternatives. As noted, the p-type gallium nitride structure is deposited above the electron blocking layer and active layer(s). The p-type layer may be doped with Mg, to a level between about 10^{16} cm⁻³ and 10^{22} cm⁻³, and may have a thickness between about 5 nm and about 1000 nm. The outermost 1-50 nm of the p-type layer may be doped more heavily than the rest of the layer, so as to enable an improved electrical contact. In a specific embodiment, the laser stripe is provided by an etching process selected from dry etching or wet etching. In a preferred embodiment, the etching process is dry, but can be others. The device also has an overlying dielectric region, which exposes 213 contact region. In a specific embodiment, the dielectric region is an oxide such as silicon dioxide, but can be others such as silicon nitride. Of course, there can be other variations, modifications, and alternatives. It is to be appreciated the light source of the projector 250 may include one or more LED as well. FIG. 2B is a simplified diagram illustrating a projector having LED light sources. This diagram is merely an example, which should not unduly limit the scope of the claims. One of ordinary skill in the art would recognize many variations, alternatives, and modifications. As an example, the blue and green LEDs are manufactured from gallium nitride containing material. In one specific embodiment, the blue LED is characterized by a non-polar orientation. In another embodiment, the blue LED is characterized by a semi-polar orientation. FIG. 3 is an alternative illustration of a projection device according to an embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims. One of ordinary skill in the art would recognize many variations, alternatives, and modifications. In FIG. 3, a projection device includes an MEMS scanning mirror, a mirror, a light conversion member, a red laser diode, a blue diode, and green laser diode. The blue and green laser diodes as shown are integrated as a single package. For example, the blue and green laser shared the same substrate and surface. Output from the blue and green laser diodes are emitted from a common plane of surface. It is to be appreciated that that by having blue and green laser diodes co- packaged, it is possible to substantially reduce the size and cost (e.g., fewer parts) of the projector device. In addition, the green and blue laser diodes are characterized by a high efficiency. For example, the blue on the green laser diode are manufactured from bulk gallium nitride material. The blue laser diode can be non-polar or semi-polar oriented. The green laser diodes similarly can be non-polar polar or semipolar. For example, following combinations of laser diodes are provided, but there could be others: Blue polar+Green nonpolar+Red* AlInGaP Blue polar+Green semipolar+Red* AlInGaP Blue polar+Green polar+Red* AlInGaP Blue semipolar+Green nonpolar+Red* AlInGaP Blue semipolar+Green semipolar+Red* AlInGaP Blue semipolar+Green polar+Red* AlInGaP Blue nonpolar+Green nonpolar+Red* AlInGaP Blue nonpolar+Green semipolar+Red* AlInGaP Blue nonpolar+Green polar+Red* AlInGaP In one embodiment, the green laser diode is characterized by wavelength of between 480 nm to 540 nm, which is dif- 20 ferent from conventional production devices that use an infrared laser diode (i.e., emission wavelength of about 1060 nm) and use SHG to double the frequency. FIG. 3A is a simplified diagram illustrating a laser diodes packaged together according to an embodiment of the present 25 invention. This diagram is merely an example, which should not unduly limit the scope of the claims. One of ordinary skill in the art would recognize many variations, alternatives, and modifications. As shown in FIG. 3A, two laser diodes are provided on a single package. For example, laser 1 as shown 30 in a blue laser diode and laser 2 is a green laser diode. Optics may be used to combine the outputs of lasers. The output of the two laser as shown in FIG. 3A can be combined in various ways. For example, optical components such as dichroic lens, waveguide, can be used to combine the 35 outputs of the laser 1 and laser 2 as shown. In other embodiments, blue and green laser diodes are monolithically integrated. FIG. 3B is a diagram illustrating a cross section of active region with graded emission wavelength according to an embodiment of the present invention. 40 This diagram is merely an example, which should not unduly limit the scope of the claims. One of ordinary skill in the art would recognize many variations, alternatives, and modifications. As illustrating FIG. 3B, for example, active regions having different emission gradient are used. Ridged 45 waveguides at different portion of the active region are adapted to emit different wavelength. FIG. 3B shows a crosssection of an active region with graded emission wavelength including ridge waveguide of laser 301 operating at a first peak wavelength determined by the cavity position relative to 50 the emission wavelength of the graded active region 302; ridge waveguide of laser 303 operating at a second peak wavelength determined by the cavity position relative to the emission wavelength of the graded active region 302; active region 302 with a peak emission gradient; n-type cladding 55 region 304; and substrate 305. FIG. 3B shows an example of a graded emission wavelength active region configuration where adjacent lasers are operating at different wavelengths as a result of lasing off being positioned in areas where the active region possesses different peak emission wavelengths. 60 FIG. 3C is a simplified diagram illustrating a cross section of multiple active regions according to an embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims. One of ordinary skill in the art would recognize many variations, 65 alternatives, and modifications. Among other things, each active region is associated with a specific wavelength. FIG. 18 3C shows a cross-section of multiple active regions including a ridge waveguide of laser 311 operating at a first peak wavelength from active region 312, which overlies active region 312 with a first peak wavelength; ridge waveguide of laser 313 operating at a second peak wavelength from active region 314, which overlies active region 304 with a second peak wavelength; n-type cladding region 315; and substrate 316. FIG. 3C shows an example of a multiple active region configuration where adjacent lasers are operating at different wavelengths as a result of lasing off of two different active regions with different peak wavelengths. It is to be appreciated the light source of the projector 300 may include one or more LED as well. FIG. 3D is a simplified diagram illustrating a projector having LED light sources. This diagram is merely an example, which should not unduly limit the scope of the claims. One of ordinary skill in the art would recognize many variations, alternatives, and modifications. As an example, the blue and green LEDs are manufactured from gallium nitride containing material. In one specific embodiment, the blue LED is characterized by a non-polar orientation. In another embodiment, the blue LED is characterized by a semi-polar orientation. FIG. 4 is a simplified diagram illustrating a projection device according to an embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims. One of ordinary skill in the art would recognize many variations, alternatives, and modifications. As shown in FIG. 4, blue, green, and red laser diodes are integrated into a light source 401. The light source 401 is combines outputs of each of the laser diodes. The combined light is projected onto the mirror, which reflects the combined light onto the MEMS scanning mirror. It is to be appreciated that, by providing laser diodes in the same package, both the size and cost of the light source 401 can be reduced. For example, following combinations of laser diodes are provided, but there could be others: Blue polar+Green nonpolar+Red* AlInGaP Blue polar+Green semipolar+Red* AlInGaP Blue polar+Green polar+Red* AlInGaP Blue semipolar+Green nonpolar+Red* AlInGaP Blue semipolar+Green semipolar+Red* AlInGaP Blue semipolar+Green polar+Red* AlInGaP Blue nonpolar+Green semipolar+Red* AlInGaP Blue nonpolar+Green polar+Red* AlInGaP FIG. 4A is a simplified diagram illustrating laser diodes integrated into single package according to an embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims. One of ordinary skill in the art would recognize many variations, alternatives, and modifications. For examples, laser 1 can be a green laser diode, laser 2 can be a red laser diode, and laser 3 can be a blue laser diode. Depending on the application, the green laser diode can be fabricated on a semi-polar, non-polar, or polar gallium containing substrates. Similarly, the blue laser diode can be formed on semi-polar, non-polar, or polar gallium containing substrates. It is to be appreciated that various
projection systems according to the present invention have wide range of applications. In various embodiments, the projections systems described above are integrated on cellular telephone, camera, personal computer, portable computer, and other electronic devices. FIG. **5** is a simplified diagram of a DLP projection device according to an embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims. One of ordinary skill in the art would recognize many variations, alternatives, and modifications. As shown in FIG. **5**, a projection apparatus includes, among other things, a light source, a condensing lens, a color wheel, a shaping lens, and a digital lighting processor (DLP) board, and a projection lens. The DLP board, among other things, 5 includes a processor, a memory, and a digital micromirror device (DMD). As an example, the color wheel may include phosphor material that modifies the color of light emitted from the light source. In a specific embodiment, the color wheel includes 10 multiple regions, each of the regions corresponding to a specific color (e.g., red, green, blue, etc.). In an exemplary embodiment, a projector includes a light source that includes blue and red light sources. The color wheel includes a slot for the blue color light and a phosphor containing region for 15 converting blue light to green light. In operation, the blue light source (e.g., blue laser diode or blue LED) provides blue light through the slot and excites green light from the phosphor containing region; the red light source provides red light separately. The green light from the phosphor may be trans- 20 mitted through the color wheel, or reflected back from it. In either case the green light is collected by optics and redirected to the microdisplay. The blue light passed through the slot is also directed to the microdisplay. The blue light source may be a laser diode and/or LED fabricated on non-polar or semi- 25 polar oriented GaN. In some cases, by combining both blue lasers and blue LEDs, the color characteristics could be improved. Alternate sources for the green light could include green laser diodes and/or green LEDs, which could be fabricated from nonpolar or semipolar Ga-containing substrates. 30 In some embodiments, it could be beneficial to include some combination of LEDs, lasers, and or phosphor converted green light. It is to be appreciated that can be other combinations of colored light sources and color wheels thereof. As another example, the color wheel may include multiple 35 phosphor materials. For example, the color wheel may include both green and red phosphors in combination with a blue light source. In a specific embodiment, the color wheel includes multiple regions, each of the regions corresponding to a specific color (e.g., red, green, blue, etc.). In an exemplary 40 embodiment, a projector includes a light source that includes a blue light source. The color wheel includes a slot for the blue laser light and two phosphor containing regions for converting blue light to green light, and blue light and to red light, respectively. In operation, the blue light source (e.g., blue 45 laser diode or blue LED) provides blue light through the slot and excites green light and red light from the phosphor containing regions. The green and red light from the phosphor may be transmitted through the color wheel, or reflected back from it. In either case the green and red light is collected by 50 optics and redirected to the microdisplay. The blue light source may be a laser diode or LED fabricated on non-polar or semi-polar oriented GaN. It is to be appreciated that can be other combinations of colored light sources and color wheels As another example, the color wheel may include blue, green, and red phosphor materials. For example, the color wheel may include blue, green and red phosphors in combination with a ultra-violet (UV) light source. In a specific embodiment, color wheel includes multiple regions, each of 60 the regions corresponding to a specific color (e.g., red, green, blue, etc.). In an exemplary embodiment, a projector includes a light source that includes a UV light source. The color wheel includes three phosphor containing regions for converting UV light to blue light, UV light to green light, and UV light 65 and to red light, respectively. In operation, the color wheel emits blue, green, and red light from the phosphor containing 20 regions in sequence. The blue, green and red light from the phosphor may be transmitted through the color wheel, or reflected back from it. In either case the blue, green, and red light is collected by optics and redirected to the microdisplay. The UV light source may be a laser diode or LED fabricated on non-polar or semi-polar oriented GaN. It is to be appreciated that can be other combinations of colored light sources and color wheels thereof. The light source as shown could be made laser-based. In one embodiment, the output from the light source is laser beam characterized by a substantially white color. In one embodiment, the light source combines light output from blue, green, and red laser diodes. For example, the blue, green, and red laser diode can be integrated into a single package as described above. Other combinations are possible as well. For example, blue and green laser diodes share a single package while the red laser diode is packaged by itself. In this embodiment the lasers can be individually modulated so that color is time-sequenced, and thus there is no need for the color wheel. The blue laser diode can be polar, semipolar, and non-polar. Similarly, green laser diode can be polar, semipolar, and non-polar. For example, blue and/or green diodes are manufactured from bulk substrate containing gallium nitride material. For example, following combinations of laser diodes are provided, but there could be others: Blue polar+Green nonpolar+Red* AlInGaP Blue polar+Green semipolar+Red* AlInGaP Blue polar+Green polar+Red* AlInGaP Blue semipolar+Green nonpolar+Red* AlInGaP Blue semipolar+Green semipolar+Red* AlInGaP Blue semipolar+Green polar+Red* AlInGaP Blue nonpolar+Green nonpolar+Red* AlInGaP Blue nonpolar+Green semipolar+Red* AlInGaP Blue nonpolar+Green polar+Red* AlInGaP In FIG. 5, the DLP projection system utilizes a color wheel to project one color (e.g., red, green, or blue) of light at a time to the DMD. The color wheel is needed because the light source continuously provide white light. It is to be appreciated that because solid state devices are used as light source in the embodiments of the present invention, a DLP projector according to the present invention does not require the color wheel shown in FIG. 5. FIG. 5A is a simplified diagram illustrating a DLP projector according to an embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims. One of ordinary skill in the art would recognize many variations, alternatives, and modifications. In an alternative embodiment, the light source comprises a single laser diode. For example, the light source comprises a blue laser diode that outputs blue laser beams. The light source also includes one or more optical members that changes the blue color of the laser beam. For example, the one or more optical members includes phosphor material. The laser beam excites the phosphor material to form a substantially white emission source which becomes the light source for the projection display. In this embodiment, a color wheel is needed in order to sequence the blue, green, and red frames to the DLP. A projection system 500 includes a light source 501, a light source controller 502, an optical member 504, and a DLP chip 505. The light source 501 is configured to emit a color light to the DMD 503 through the optical member 504. More specifically, the light source 501 includes colored laser diodes. For example, the laser diodes include red laser diode, blue laser diode, and green laser diode. At a predetermined time interval, a single laser diode is turn on while the other laser diodes are off, thereby emitting a single colored laser beam onto the DMD **503**. The light source controller **502** provides control signal to the light source **501** to switch laser diodes on and off based on predetermined frequency and sequence. For example, the switching of laser diodes is similar to the function of the color wheel shown in FIG. **5**. FIG. 6 is a simplified diagram illustrating a 3-chip DLP projection system according to an embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims. One of ordinary skill in the art would recognize many variations, alternatives, and modifications. As shown in FIG. 5, the 3-chip DLP projection system includes a light source, optics, and multiple DMDs, and a color wheel system. As shown, each of the DMDs is associated with a specific color. In various embodiment, the white light beam comprises a 15 substantially white laser beam provided by the light source. In one embodiment, the output from the light source is laser beam characterized by a substantially white color. In one embodiment, the light source combines light output from blue, green, and red laser diodes. For example, the blue, 20 green, and red laser diode can be integrated into a single package as described above. Other combinations are possible as well. For example, blue and green laser diodes share a single package while the red laser diode is packaged by itself. The blue laser diode can be polar, semipolar, and non-polar. 25 Similarly, green laser diode can be polar, semipolar, and non-polar. For example, blue and/or green diodes are manufactured from bulk substrate containing gallium nitride material. For example, following combinations of laser diodes are provided, but there could be others: Blue polar+Green
nonpolar+Red* AlInGaP Blue polar+Green semipolar+Red* AlInGaP Blue polar+Green polar+Red* AlInGaP Blue semipolar+Green nonpolar+Red* AlInGaP Blue semipolar+Green semipolar+Red* AlInGaP Blue semipolar+Green polar+Red* AlInGaP Blue nonpolar+Green nonpolar+Red* AlInGaP Blue nonpolar+Green semipolar+Red* AlInGaP Blue nonpolar+Green polar+Red* AlInGaP In an alternative embodiment, the light source comprises a 40 single laser diode. For example, the light source comprises a blue laser diode that outputs blue laser beams. The light source also includes one or more optical members that change the blue color of the laser beam. For example, the one or more optical members include phosphor material. It is to be appreciated that the light source may include laser diodes and/or LEDs. In one embodiment, the light source includes laser diodes in different colors. For example, the light source may additionally include phosphor material for changing the light color emitted from the laser diodes. In 50 another embodiment, the light source includes one or more colored LEDs. In yet another embodiment, light source includes both laser diodes and LEDs. For example, the light source may include phosphor material to change the light color for laser diodes and/or LEDs. In various embodiments, laser diodes are utilized in 3D display applications. Typically, 3D display systems rely on the stereopsis principle, where stereoscopic technology uses a separate device for each person viewing the scene which provides a different image to the person's left and right eyes. 60 Examples of this technology include anaglyph images and polarized glasses. FIG. 7 is a simplified diagram illustrating 3D display involving polarized images filtered by polarized glasses. As shown, the left eye and the right eye perceive different images through the polarizing glasses. The conventional polarizing glasses, which typically include circular polarization glasses used by RealD Cin- 22 emaTM, have been widely accepted in many theaters. Another type of image separation is provided by interference filter technology. For example, special interference filters in the glasses and in the projector form the main item of technology and have given it this name. The filters divide the visible color spectrum into six narrow bands—two in the red region, two in the green region, and two in the blue region (called R1, R2, G1, G2, B1 and B2 for the purposes of this description). The R1, G1 and B1 bands are used for one eye image, and R2, G2, B2 for the other eye. The human eye is largely insensitive to such fine spectral differences so this technique is able to generate full-color 3D images with only slight colour differences between the two eyes. Sometimes this technique is described as a "super-anaglyph" because it is an advanced form of spectral-multiplexing which is at the heart of the conventional anaglyph technique. In a specific example, the following set of wavelengths are used: Left eye: Red 629 nm, Green 532 nm, Blue 446 nm Right eye: Red 615 nm, Green 518 nm, Blue 432 nm In various embodiments, the present invention provides a projection system for projecting 3D images, wherein laser diodes are used to provide basic RGB colors. FIG. 8 is a simplified diagram illustrating a 3D projection system according to an embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims. One of ordinary skill in the art would recognize many variations, alternatives, and modifications. As shown in FIG. 8, a projection system includes a projector 801. The projector 801 is configured to project images associated for one eye (e.g., left eye). The projector 801 includes a first light source. The first light source including a first set of laser diodes: a red laser diode, a green laser diode, and a blue laser diode. Each of the laser diode is associated with a specific wavelength. For example, red laser diode is config-35 ured to emit a laser beam characterized by a wavelength of 629 nm, green laser diode is configured to emit a laser beam characterized by a wavelength of 532 nm, and blue laser diode is configured to emit a laser beam characterized by a wavelength of 446 nm. It is to be appreciated that other wavelengths are possible as well. In various embodiments, the blue laser diode is characterized by a non-polar or semi-polar orientation. For example, the blue laser diode is fabricated from gallium nitride containing substrate. In one specific embodiment, the blue laser diode is manufactured from bulk substrate material. Similarly, the green laser diode can manufactured from gallium nitride containing substrate as well. For example, the green laser diode is characterized by a non-polar or semi-polar orientation. It is to be appreciated that color LEDs may also be used to provide colored light for the projection elements. For example, a red LED can be used instead of a red laser diode in providing the red light. Similarly LED and/or laser diodes in various colors can be interchangeably used as light sources. Phosphor material may be used to alter light color for light emitted from LED and/or laser diodes. The projector **802** is configured to project images associated for the other eye (e.g., right eye). The second light source including a second set of laser diodes: a red laser diode, a green laser diode, and a blue laser diode. Each of the laser diode is associated with a specific wavelength, and each of the wavelengths is different from that of the corresponding laser diodes of the first light source. For example, the red laser diode is configured to emit a laser beam characterized by a wavelength of 615 nm, the green laser diode is configured to emit a laser beam characterized by a wavelength of 518 nm, and the blue laser diode is configured to emit a laser beam characterized by a wavelength of 432 nm. It is to be appreciated that other wavelengths are possible as well. Projectors **801** and **802** shown in FIG. **8** are positioned far apart, but it is to be appreciated that the two projectors may be integrally positioned within one housing unit. In addition to light sources and image source, the projectors include optics for focusing images from the two projectors onto the same screen Depending on the specific application, various types of filters can be used to filter projected images for viewers. In one embodiment, bandpass filters are used. For example, a bandpass filter only allows one set of RGB color wavelength to pass to an eye. In another embodiment, notch filters are used, where the notch filters would allow substantially all wavelength except a specific set of RGB color wavelength to pass to an eye. There can be other embodiments as well. In certain embodiments, the present invention provides a liquid crystal on silicon (LCOS) projection system. FIG. 9 is a simplified diagram illustrating a LCOS projection system 20 900 according to an embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims. One of ordinary skill in the art would recognize many variations, alternatives, and modifications. As shown in FIG. 9, a green laser diode provides green 25 laser light to the green LCOS through splitter 901; a blue laser diode provides blue laser light to the blue LCOS through splitter 903; and a red laser diode provides red laser light to the red LCOS through splitter 904. Each of the LCOS is used to form images in a predetermined single color as provided by 30 its corresponding laser diode, and the single-colored image is combined by the x-cube component 902. The combined color image is projected onto the lens 906. In various embodiments, one or more laser diodes used in the projection system **900** are characterized by semi-polar or 35 non-polar orientation. In one embodiment, the laser diodes are manufactured from bulk substrate. In a specific embodiment, the blue and green laser diodes are manufactured from gallium nitride containing substrate. It is to be appreciated that color LEDs may also be used to provide colored light for 40 the projection elements. For example, a red LED can be used instead of a red laser diode in providing the red light. Similarly LED and/or laser diodes in various colors can be interchangeably used as light sources. Phosphor material may be used to alter light color for light emitted from LED and/or 45 laser diodes. The LCOS projection system 900 comprises three panels. In an alternative embodiment, the present invention provides a projection system with a single LCOS panel. Red, green, and blue laser diodes are aligned where red, green, and blue 50 laser beams are collimated onto a single LCOS. The laser diodes are pulse-modulated so that only one laser diode is power at a given time and the LCOS is lit by a single color. It is to be appreciated that since colored laser diodes are used, LCOS projection systems according to the present invention 55 do not need beam splitter that split a single white light source into color beams as used in conventional LCOS projection systems. In various embodiments, one or more laser diodes used in the single LCOS projection system are characterized by semi-polar or non-polar orientation. In one embodiment, 60 the laser diodes are manufactured from bulk substrate. In a specific embodiment, the blue and green laser diodes are manufactured from gallium nitride containing substrate. In various embodiments, the configuration illustrated in FIG. 9 is also used in ferroelectric liquid crystal on silicon (FLCOS) systems. For example, the panels illustrated FIG. 9 can be FLCOS panels. 24 While the above is a full description of the specific embodiments, various modifications, alternative constructions and equivalents may be used. Therefore, the above description and illustrations should not be taken as limiting the scope of the present invention which is defined by the appended claims.
What is claimed is: - 1. A projection apparatus comprising: - a first video source, the first video source being associated with a first display, the first video source including a first light source, the first light source including a first edge emitting blue laser diode characterized by a predetermined first wavelength, the first edge emitting blue laser diode being manufactured from gallium nitride containing material; - a second video source, the second video source being associated with a second display, the first video source and the second video source being temporally synchronized, the second video source including a second light source, the second light source including a second edge emitting blue laser diode characterized by a predetermined second wavelength, the second edge emitting blue laser diode being manufactured gallium nitride material, the predetermined first wavelength being different from the predetermined second wavelength by 10 nm to 30 nm; and - a power source electrically coupled to the first video source. - 2. The apparatus of claim 1 wherein: - the first light source further includes a first edge emitting green laser diode and a first edge emitting red laser diode, the first edge emitting green laser diode being characterized by a predetermined third wavelength, the first edge emitting red laser diode being characterized by a predetermined fourth wavelength; and - the second light source further includes a second edge emitting green laser diode and second edge emitting red laser diode, the second edge emitting green laser diode being characterized by a predetermined fifth wavelength, the second edge emitting red laser diode being characterized by a predetermined sixth wavelength. - **3**. The apparatus of claim **1** further comprising a video driver module for driving the first video source. - **4**. The apparatus of claim **1** wherein the first edge emitting blue laser diode is characterized by a semi-polar orientation. - **5**. The apparatus of claim **1** wherein the first edge emitting blue laser diode is characterized by a non-polar orientation. - 6. The apparatus of claim 1 further comprising optics for projecting the first display and the second display onto a screen - 7. The apparatus of claim 1 wherein the first light source further comprises an edge emitting green laser diode, the edge emitting green laser diode being characterized by a non-polar orientation - 8. The apparatus of claim 1 wherein the first light source further comprises an edge emitting green laser diode, the edge emitting green laser diode being characterized by a semi-polar orientation. - **9**. The apparatus of claim **1** further comprising a sound module, the sound module being synchronized with the first video source. - 10. The apparatus of claim 1 wherein: - the first display is visible through a first filter and substantially invisible through a second filter; - the second display is visible through the second filter and substantially invisible through the first filter; the first filter being a notch filter blocking at least the second wavelength; the second filter being a notch filter blocking at least the first wavelength. 11. The apparatus of claim 1 wherein: the first display is visible through a first filter and substantially invisible through a second filter; the second display is visible through the second filter and substantially invisible through the first filter; the first filter being a bandpass filter blocking at least the second wavelength; the second filter being a bandpass filter blocking at least the first wavelength. 12. A projection apparatus comprising: a first video source, the first video source being associated with a first display, the first video source including a first light source, the first light source including a first edge emitting blue laser diode characterized by a predetermined first wavelength, the first edge emitting blue laser diode being manufactured from gallium nitride containing material; a second video source, the second video source being associated with a second display, the first video source and the second video source being temporally synchronized, the second video source including a second light source, the second light source including a second edge emitting blue laser diode characterized by a predetermined second wavelength, the second edge emitting blue laser diode being manufactured gallium nitride material, the predetermined first wavelength being different from the predetermined second wavelength by 10 nm to 30 nm; a power source electrically coupled to the first video source; and an optical device coupled to the first display and the second display, and configured to project an image onto a screen. 13. The apparatus of claim 12 wherein: the first light source further includes a first edge emitting green laser diode and a first edge emitting red laser diode, the first edge emitting green laser diode being characterized by a predetermined third wavelength, the first edge emitting red laser diode being associated with a predetermined fourth wavelength; and the second light source further includes a second edge emitting green laser diode and second edge emitting red laser diode, the second edge emitting green laser diode being characterized by a predetermined fifth wavelength, the second edge emitting red laser diode being characterized by a predetermined sixth wavelength. 14. The apparatus of claim 12 further comprising a video driver module for driving the first video source. 15. The apparatus of claim 12 wherein the first edge emitting blue laser diode is characterized by a semi-polar orientation. 26 16. The apparatus of claim 12 wherein the first edge emitting blue laser diode is characterized by a non-polar orientation. 17. The apparatus of claim 12 wherein the first light source further comprises an edge emitting green laser diode, the edge emitting green laser diode being characterized by a non-polar orientation. 18. The apparatus of claim 12 wherein the first light source further comprises an edge emitting green laser diode, the edge emitting green laser diode being characterized by a semi-polar orientation. 19. The apparatus of claim 12 further comprising a sound module, the sound module being synchronized with the first video source. 20. The apparatus of claim 12 wherein: the first display is visible through a first filter and substantially invisible through a second filter; the second display is visible through the second filter and substantially invisible through the first filter; the first filter being a notch filter blocking at least the second wavelength; the second filter being a notch filter blocking at least the first wavelength. 21. The apparatus of claim 12 wherein: the first display is visible through a first filter and substantially invisible through a second filter; the second display is visible through the second filter and substantially invisible through the first filter; the first filter being a bandpass filter blocking at least the second wavelength; the second filter being a bandpass filter blocking at least the first wavelength. **22.** A method of using a projection apparatus, the method comprising: outputting a first image from a first video source, the first video source being associated with a first display, the first video source including a first light source, the first light source including a first edge emitting blue laser diode characterized by a predetermined first wavelength, the first edge emitting blue laser diode being manufactured from gallium nitride containing material; outputting a second image from a second video source, the second video source being associated with a second display, the first video source and the second video source being temporally synchronized, the second video source including a second light source, the second light source including a second edge emitting blue laser diode characterized by a predetermined second wavelength, the second edge emitting blue laser diode being manufactured gallium nitride material, the predetermined first wavelength being different from the predetermined second wavelength by 10 nm to 30 nm; and projecting an image onto a screen through an optical device coupled to the first display and the second display, and configured to project an image onto the screen. * * * * *